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Recent advances in self-amplified spontaneous emi¢SIABE) experiments stimulate interest in quantita-
tive comparison of measurements with theory. In this paper we show that the widely used simulation code
TDA3D, developed by Tran and Wurte[€omput. Phys. Commurb4, 263 (1989] even though a single
frequency code, can be used to determine the output power in the SASE process with excellent approximation
in the exponential growth regime. The method applies when the gain is not very high, which is a special
advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the
exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power
and the number of simulation particles in the cade3p: (P)= N;/N,(P’), where(P) is the output power
andN, is the line density of the electrons, whi{®’) is the calculated output power using a line densify
of the number of simulation particles in the cotdeasp. Because of the scaling property, the number of
simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison
of our results with experiment yields new insight into the SASE prod&63-651X98)08110-0

PACS numbdis): 52.75.Ms

[. INTRODUCTION experiment at the Accelerator Test FacilitfATF) at
Brookhaven National Laboratory and several others, the ana-
Recently, there have been a number of experimental denlytic estimates are not accurate. Hence, a simulation is very
onstrations of self-amplified spontaneous emissiIBASE)  useful in these cases. There are simulation codes taking into
[1]. All of them measured the SASE radiation pulse energyaccount broad bandwidth that can be used to simulate SASE,
as a function of pulse charge, showing a deviation from lin-for example, the well known codeINGER [8]. These codes
ear dependence. A comparison of these results with simuld@keé much longer running time than the single frequency
tion and analytical theory is urgently needed. codeTDA3D [12], deveI(_)ped by Tran and Wurtgl_e. Hence, it
The theory on the average power, bandwidth, and trans"-,"omd pe very useful if one can use the familiar and rela-
verse mode expansion for SASE was developed years adB’ely S|_mpler c0deTDA3D to simulate the SASE Process.
[2-7). A consistent one-dimensionélD) SASE theory in- 1 PR S B8 S, T e o calcula
corporating the equations of motion of the electrons and th? ! ) 9
Maxwell equations together and solving the initial value lon, can be_ dlre_ctly us_ed for t.hls purpose. One reason that
problem was derived in Reff4,5]. The theory was extended thls 'S poss_lble 'S that in the linear regime there IS & Very
o a 3D case in Ref§6,2]. In Ref.[2] the 3D problem for a simple scaling relation between the number of simulation

'L ) articles and the output power. Hence, the number of simu-
parallel electron beam was explicitly solved so that it can bga;ion particles can be made much smaller than the actual

a_lpplied directly for a quantitative compgrison. with simula- number of electrons in the beam, making the simulation
tions. Also, a method was developed to investigate the trangsractical. In this paper we derive the scaling relation for a
verse coherence of the output radiation, relating it to theyarallel electron beam, and then test it by simulation. We
degeneracy of the guided modex3]. The theory was also  also found by simulation that for a beam with finite emit-
formulated in a way allowing analysis of the problem with tance, and even for an unmatched beam, the scaling relation
finite energy spread. In Reff3] the equivalent noise power is still valid. This indicates the general validity of the scal-
was identified as the wiggler radiation in the first two powering. We shall show that although this method does not pro-
gain lengths. The shot noise formula was derived for beanvide all the information for different aspects of the SASE
sizes ranging from the large to the small beam size limitsprocess, it turns out to give an excellent approximation for
and the coupling of shot noise into different guided modeshe output power.
was determined. Later, this result was extended to include As a test, the ratio of the SASE radiation spectrum to the
the effect of the angular divergence of the electriofisThe  spontaneous radiation spectrum is calculated for an idealized
theory [2,3] is appropriate for comparison with the recent parallel beam by both the analytical theory developed in
experiment. Refs.[2,3] and the numerical methods developed here using
However, there are limitations on the applicability of the the codeTpaA3D. These two very different methods agree
analytic theory, especially when the gain is not sufficientlywith each other very well, strongly supporting their validity.
high to assume that the exponentially growing terms domi- It is clear from this discussion that this method uses an
nate. Also, when the electron beam is not matched to thentirely different approach to reduce the number of simula-
focusing of the wiggler, the electron beam size is not con4tion particles as compared with the simulation codes such as
stant in the wiggler, as is the case for a recentlh SASE  GINGER We shall briefly compare these two approaches.
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As explained in Ref[9], the codes such aaNGERuUse an  can be used to calculate SASE power, which has intrinsically
artificial initial distribution to simulate the SASE start-up a finite bandwidth. Then we explain why the output power
process. To suppress the increased shot noise due to the ligecales inversely with the number of simulation particles in
ited number of simulation particles, the codes are based onthe codeTbA3D. Next, in Sec. Ill we describe an analytical
distribution with equally spaced particles. To introduce aestimate of the output power from a free-electron |46&it)
controlled noise, they generate a random deviation fronfVith an idealized parallel electron beam with step-function
the equally spaced distribution with a controlled rms valuelransverse profile. Finally, in Sec. IV we present the com-
of the displacements. The rms displacement is chosen “t®arison of the numerical and the analytical methods, then we
reproduce the same mean and variance of the quaniay” @PPly the method to the practical case of theuh SASE
(exp(=i6))= (LIN) 3}, exp(~i#}), whered; is the pondero- experiment at ATF of BNL.
motive phase of the particlg andN is the total number of
electrons, “using, instead of the real distribution and number Il. THE SCALING RELATION
N of electrons, an artificial distribution with a much smaller AND THE NUMERICAL SIMULATION
numbern.” While the mean and variance of the relevant ) . )
quantity simulate the initial status of the system, it is not ~First, we shall explain why a single frequency cauasp
evident that the higher moments of this quantity would notc@n be used to calculate the output power of SASE, a phe-
affect the high gain process, it is also not evident that thétomenon with finite bandwidth. Later, we will show how
mean and variance of the relevant quantity would remain t®n€ can use very few simulation particles to simulate the
be the same as the realistic distribution during the high gaixPeriment with a huge number of electrons, by deriving a
process, even though the simulations did show an agreeme?ﬁ?aung relation between power and the number of simulation
with the linear high gain theory. particles. _

As compared with these codes, our method uses a realistic N the originalTbA code, all the simulation particles are
distribution instead of an artificial evenly spaced distribution.limited to within one optical wavelength, or one cell. During
We do not attempt to suppress the noise due to the limite@ later modification of the code for harmonic generation cal-
number of simulation particles. Rather, we use the scalingulation[10], we extended the code such that the simulation
relation to go from the simulation case with increased_parncles could be in an arbitrary number of wavelengths. It
start-up noisédue to the reduced number of simulation par-iS €asy to see that if the number of cellsiis then the code
ticles to the realistic case. In this manner, we obtain thelS describing a fictitious electron-beam distribution with lon-
correct radiation power in the linear regime. Another differ-gitudinal periodic structure ofy, optical wavelengths. That
ence is that our method uses single frequency codes such s We artificially set a periodic boundary condition on the
TDA3D, instead of the multifrequency or time-dependentélectron beam with period equal e optical wavelengths. In
codes to carry out the calculatiofihe reason we can use a this case, the radiation spectrum has a line structure with
single frequency code to calculate for an intrinsically broadfrequency spacings/n;, wherews is the optical frequency.
band SASE process will be explained in Se. @ur method To illustrate this point we plot the power spectrum of
does not require a modification to the single frequencysPontaneous radiation in Fig. 1. When the distribution is non-
codes, and hence can be used directly by anyone familigteriodic, the spontaneous radiation spectrum from a wiggler
with the codetpasp. Because these codes are time indepenWith N,,=10 periods is a continuum as shown by FigA},
dent, they need much shorter CPU time than the timeWwith a width of ws/N,,= ws/10. When we artificially intro-
dependent codes. duce a fictitious periodic structure in the electron-beam dis-

There is a disadvantage associated with our method, i.effibution, the radiation has a line structure, as shown by Figs.
it only applies to the linear regime, not the saturation regime1(B)—1(D) for three different cases. The total power is the
However, the fact that this method needs much shorter cCP8UM of the height of the lines. We denote the slippage dis-
time and that many people are more familiar with the singletance byls=NyAs, and the distribution period bly=n\s,
frequency codes such a®a3Dp than with time-dependent then Fig. 1B) corresponds to the cabe |, the line spacing
codes makes our method a useful complementary approaebs/n; is much narrower than the spontaneous radiation
to the problem. width ws/N,,, and the dense line structure gives a profile of

In this paper we assume the electron bunch is sufficientlfhe spontaneous spectrum of FigAL Figure 1C) is for a
long and the bunch shape is sufficiently smooth, so the cosase wheré=2Il¢, and there are only two lines left. When
herent spontaneous emissi®SE from the detailed struc- we choose the period to be equal to the slippage distince
ture in the bunch of order of the radiation wavelength is=Is, i.e., whenn,=N,,, the line spacing is equal to the
negligible. In short, we discuss incoherent self-amplifiedradiation spectrum width, and hence there is only one line, as
spontaneous emission, starting from shout noise. In an actuahown in Fig. 1D).
experiment, one should use experimental technique to distin- The codeTDA3D, developed fronTDA, only describes a
guish CSE and SASE. One example of the experimentanonochromatic radiation beam, i.e., the Maxwell equation is
method to rule out the existence of CSE is to show that in théeduced to describe a single frequensy. To rigorously
experiment there is no enhancement to the transition radialescribe SASE, the code should be further modified to in-
tion due to coherent transition radiation in the wavelengthclude other frequencies such asg(n—1)/n;, wg(n
range of interest. If one can rule out the existence of the CSE1)/n,, etc. Now, if we choos@, to be equal to, or larger
in an experiment, the method developed here can then kban, the number of periods,, in the wiggler, the slippage
applied. Nw\s is smaller than the spacing between the periodic

In Sec. Il, we first explain why a single frequency codeboundaries of the electron beam. Hence there is no interac-
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FIG. 1. (a) lllustration of the spontaneous power spectrum of a nonperiodic structhyesne spectrum of a structure with period much
longer than the slippage distance. In this cd$¥dw ==7___ P, 8(w— vAw), whereAw= ws/n,. We plotP, vs vAw (n>N,). ()
Distribution periodl two times longer than the slippage distatig€n,=2N,,). (d) Distribution periodl equal to the slippage distantg

(M =Ny).

tion between any two of the idealized periods of the electroreven though it handles only one single spectral line, and does
distribution. If we combine the contributions from all the not provide all the information about the spectrum.
frequency lines, the calculated output energy within one ide- Next, we shall explain why we can use only a small num-
alized period of the electron distribution is the same as iber of simulation particles to study the SASE effect while the
would be from a nonperiodic structure in the electron beamactual number of electrons is many orders of magnitude
i.e., the same as for the realistic case for SASE process. Thmore than a computer memory can handle. In the following,
output power in one of the many lines is the power within awe shall show that during the exponential growth before
bandwidth of 1N,, centered around that line, or more pre- saturation, the average output power is inversely propor-

cisely, the power spectrum times the bandwidtN,, : tional to the number of simulation particles in an optical
(wg/Ny,)(dp/dw). wavelength. That is, we can calculate the average output
Now from the 1D analytic theory of SASE, we know that power (P) using the averaged simulation output power
the rms bandwidth of the SASE spectruni4s5] (P"):
o, 31/§p) vz N
—2_ , 1 =_"(p’
o KLy @ (P)=x, (P )

wherep is the Pierce paramet¢tl], k,, the wiggler wave whereN, and N, are the line density of the electrons and
number,L,, the wiggler length. For convenience, we shall simulation particles, respectively, or, equivalently, we
rewrite the width in terms of a “full width,” which is de- choose them to be the number of electrons and simulation
fined so that when it is multiplied by the peak power specparticles within one optical wavelength, respectively.

trum dP/dw it gives the total power. Using the 1D gain  We would like to elaborate a little about the meaning of
length formula[11] Lg=\,/47pv3, we find the full width  the “simulation particles” here. On the right hand side of the
is (IN,,)VL3/47Ls=(1/N,)VL/4Ls. This width is nar- Maxwell equation, the simulation particles usedTipa be-
rower than 24,, as long as.,,<16L. So when the wiggler have like macro particles, each carrying charge much larger
length is much shorter than 16 power gain lengths, if wethan the actual electron, so that their density distribution pro-
choosen, to be equal to the number of periobs,, to good vides an average charge density equal to the actual charge
approximation there is only one line within the bandwidth density. However, in Newton’s equations of motion, they
centered around the resonant frequency. Therefore when tifiellow the same motion as if they are actual electrons each
wiggler length is much shorter than 16 power gain lengthswith the same charge as a single electron. Therefore this
TDA3D serves as a good approximation to the output poweroncept of “simulation particle” is a mathematical abstrac-
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tion, which is unphysical but useful in the calculation. Thewherer=k,z, and, as in Ref{2], we use{ to represent the
more quantitative meaning of this concept will become cleaponderomotive phasgvhile in TDA [12] @ is used. E is the
during the following derivation of the scaling relation. slowly varying amplitude and phase of the electric field, cor-
Before deriving this result for a special case when theresponding toa.e'#s of Eq. (3) of TDA. f is the electron
angular divergence and energy spread of the electron beadistribution function normalized so thatffdy is the elec-
are zero, we point out that this conclusion has been verifietron density, wheren, is the peak electron density. Notice
for many cases with finite energy spread and emittance byhat the definition of the transverse Laplacif in Ref.[2]
direct simulation after averaging over many runs with differ-js different from that in Eq(3): the transverse coordinates

ent initial random electron distributions. are scaled as

To derive the scaling relation of output power with the
number of simulation particles, we first write down the Max- X= */stka. (5)
well equation in the form used in the codea [12]:

. 2 139] | N, as defined by Eq(2.20 of Ref.[2]. D; is a constant given
d 2 i € 0 by
(az“inksVl a2 2k N, ,2*1 oX=X)) ,
HoNo€-CAL[JJ]
e i =T omk, (6)

X o(y—yjaw(X;.yj) -
. whereA,, is the maximum value of the vector potential of

@) the wiggler magnetic fieldyy the vacuum permeability. For
wherea.e %s is the dimensionless slowly varying amplitude & helical wiggler, replacingJJ] by 1 in Dy, this becomes
and phase of the radiation signal, is the wiggler's dimen- dentical to Eq.(2.29 of Ref.[2].
sionless vector potentiak, the wave number of the radia- '€ Viasov equation igsee Eq/(2.24) of Ref.[2] and the
tion, 1, the beam current); is the ponderomotive phase of explanation following i
the electronj, vy; the energy of the electropy Z,=377() of of 1 of
the vacuum impedance, aridJ] the Bessel factor. We —+9p—=D,Ee¢— _0,
would like to apologize here for the possible confusion due at "¢ Y dy
to the mixed notations introduced from the two references _ 2, 2 -
[2,12]; we used notations from both references because it jwhere 7=1- yo/y* is the energy deviation from the reso-
essential we compare the equations in these two references?gnt €nergy, ands is given by[for helical wiggler, replace
derive the scaling relation. We emphasize that during théJJ] by 2, not 1, as seen from E(R.26 of Ref. [2]]
derivation of Eq(3) from the Maxwell equation, with a care- A [3J]
ful examination, we found that if the sum is over the number D= ®)
of electronsN, within a certain longitudinal distance, such 2 améc3k,,’
as over a ponderomotive periog in the example here, the
currentl 5 has to be also divided by, as shown on the right andf, is the smoothed undisturbed initial distribution func-
hand side of Eq(3). If we increase the distance tp periods, tion Eq.(2.21) of Ref.[2]:

i.e., sum oven, cells, the denominator should be replaced by
nN, . However, in actual calculation, this number must be fo=u(¢,x)8(y— 7o), ()]
replaced by a much smaller numbbk , the number of

)

whereu is the transverse profile. For a step-function profile,

simulation particles. IntbA, the Maxwell equation3) is . ='© .
coupled with the equations of motion of the simulation par-t IS Simply the step function. In Ref2] the Maxwell equa-

ticles. As we move along the wiggler by increasinin one 10N [EQ. (4)] and the Viasov equatiofEq. (7)] are coupled
step, the code uses the field value and the dynamic variabld@ €liminate the distribution functiof, resulting in a third
of the simulation particles to trace the new values at the nexprder partial differential equation, the envelope equation for
step, using these equations. We emphasize that imthe  he electric field Eq. (2.39 of Ref. [2]]:
code, when we replacll, by N, , all the other parameters 52
such as the current, are kept the same, so the only changes e
are to replace (N,) 2;\21 by (1/N;)E]N:*l in the Maxwell J
equation and to trach; equations of motion of the particles
instead ofN, . We shall show now that this replacement will where the Pierce paramef{drl], as we mentioned before, is
not change the growth rate, but will increase the shot noisgiven by (2p)3=2D1D2/y8. This is a homogeneous equa-
inversely proportional tiN; . tion, and its Green function and hence the growth rate of the

In Ref. [2] we derived the start-up noise by the coupledsystem are determined by the Pierce paramgtand the
Maxwell and Vlasov equations. The Maxwell equation cor-profile functionu. The solution of this envelope equation is
responding to Eq(3) is written in the form[see Eq(2.23 of  obtained from the Green function and the initial conditions.
Ref. [2]] In the special case of SASE, the initial condition is set by the
s s q initial distribution functionf.

o2 e i Y The main point now is the observation that the term

ar ﬁ_g_IVL) E=De gf 7f’ “) e “ffdy in Eq. (4 corresponds to the sum

uE,

LG iV2|E=(2p)3
+——i =
or o 1 ( P)

J J

— 4 —+i

ar  d¢
(10
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(1N,) =™ e~ in Tpa code [Eq. (3)]. When the sum This can be obtained simply by replacing eatfunction in
’N:l N/ the initial condition Eq.(12) by the corresponding Green
(1N,) 22, in TDA is replaced by (M,) Z;2,, the con-  fynction g with a corresponding phase factor, replacing
stants in front of the sum in Eq3) are not changed. In N, Ny .
particular, the currenty is not changed. In the Maxwell- (1/N”)2jzl_by(_1/_'\lk)21'=l' and then multiplying by a con-
Vlasov equation analytical approach, this replacement corre3tant. For S|mpI|C|ty,_V\_/e shall not quote the constantsc
sponds to a replacement of the particle densityn the term  and the Green functiog here, and only refer to Eq$5.5),

e '{[fdy in Eq. (4) by (5.6), and(4.2), (4.13 of Ref.[2], because they are not es-
sential for our conclusion about the scaling relation here. We
. Ny only emphasize that the density found in x of Eq. (5.6) of
No= 1y, Mo (11 Ref.[2] remains to beny, not to be replaced by;,. X is the

_ scaled transverse position given by E5). Finally, using the
However, in Eq(4), the constanD, in frontof e '*ffdyis electric field Eq(13), and the fact that the density in the sum
not changed, i.e., the density, in the expression oD, in 3’ is ny instead ofny, we find the output powefsee Egs.

Eqg. (6) is not replaced by . (5.10, (5.14, and(5.15b of Ref.[2]]
In the derivation of start-up from shot noise in Rgf] we )
used the initial distributiofisee Eq.(5.3) of Ref.[2]] , Ksk . - -
(Py= 2 [ [ o [ aclace— i Pucy.
o''o

1
f(r=0)=— Nz—z)d(r—r)o(y—vy). (12
( ) No 29 2 poly=v)- (12 The only difference of this result from RéR] is the replace-

ment ofng by ng. Hence, using this equation and the relation

The replacement o, by N, in TDA3D corresponds to re- Eq. (11) betweemy andng, we immediately find the scaling

placing ny in this initial condition byn(, as given in Eq.

(11). Similarly in the Vlasov equatiofi), the only change is reslt

the density of the distributiori, the constanD,, and the N/

smoothed distribution functiorfy,, and hence the profile <P>=N—<P’>.
A

function u is not changed. Because when we replace the

densityn, of the functionf by n,, the constant®,, D, and This scaling relation and the discussion about how to use
the beam transverse profilein the coupled Maxwell-Vlasov he single frequency code to calculate output power make it

equation are not changed, and during the derivation of th%ossible for us to calculate the SASE powertma3.
envelope equatiofEq. (10)] the functionf is eliminated, the

resulting envelope equation is left unchanged. Therefore the
replacement oN, by N, in TDA3D does not correspond to a
change in the envelope equati@tD). Therefore the growth To test the simulation, we need an analytical estimate.
rate and Green function of the system remain unchanged. Our analytical estimate for start-up noise is based on a 3D
It is clear from this discussion that only the initial condi- theory[2,3] for an electron beam with a step-function profile,
tion is changed, and the growth rate and Green function ofero energy spread, and zero angular spread. We use this
the system do not change. Based on this analysis, we havdealized model here because this problem has been solved
traced step by step the shot noise derivation of R8flfrom  explicitly. We apply the newly developed simulation method
Eqg. (5.1 to Eq.(5.16 of Sec. V of Ref.[2]], to make sure to the same case, to check the accuracy of the simulation. In
that the parameter, associated with the initial conditiofh addition, as a by-product, we found that this idealized model
Eqg. (12), always be replaced hyg, but the same parameter can be used for estimating the start-up noise of theni
n, that appeared ifD; does not change. The derivation is SASE experiment at ATF of BN[L]. The geometrical emit-
straightforward but tedious, as described in detail in Sec. tance in this case is much smaller than the wavelength di-
of Ref.[2], so we shall not duplicate it, but only give a brief vided by 27, and the betatron wavelengt m) is much
description here. The basic idea of the derivation is that théonger than two power gain lengths-0.2 m), resulting in
contribution to the radiation field from each particle startsnegligible betatron motion during the start-up process. If we
from a & function determined by the initial distribution Eq. choose the beam radius such that it has the same rms beam
(12), then evolves during the FEL interaction according toSize and same current, then the model has a growth rate quite
the Green functiomy [Eq. (4.10 of Ref.[2]], determined by close to that of the more realistic waterpag model. In Sec. IV,
the coupled Maxwell-Vlasov equations. The output field is"e Shall see that when we choose this idealized set of pa-

then a sum of these contributions. Therefore the replacemef@Meters, the analytical estimate agrees very well with the
of N, by N/ in TDA3D corresponds to the replacementsf simulation results, providing support for the validity of the

by 3’ in our analytical derivation, where the prime in the simulation.

sum indicates that the sum is over a random distribution with dI.Si.Sed on t?e an_al;;flls of _(I;zeé[ﬁﬁ],dthe ratio Oft SASE
densityng instead ofng. Thus, for example, the electric field raciation spectrum In the guided modeover spontaneous

E is given[see Eq(5.8) of Ref.[2]] by radiation spectrum is given by

Ill. THE ANALYTICAL ESTIMATE

(dPyn/dw) 1 _ 2Lg,
nn I_SASE: —eLW’LGnCn(a) ’ (14)
(dP/dw) ¥ L

spon w

L obk o, . .
E(r.z,x)sz e 'hig(r,—¢xx). (13
0
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whereL,, is the wiggler length, and,,, and Lg, are the where\,, is the wiggler period.

output power and the power gain length in the guided mode The variabledN,, andF, in the parentheses are then cal-
n, respectively. The labei used here actually represents anculated by Eqs(6.31) and(6.30 of [2], respectively. These
index, which could be a set of several discrete indexes. Fggxpressions are complicated but the calculation is straightfor-
example, it could bgj,m}, wherem is the azimuthal node Ward and is given in the Appendix. To a good approxima-
number and the radial node number. So the notation™  tion, when a>0.25 the calculated results fat,(a) and
should be understood as appropriate for the text where ¥m(\,)) as functions of are fit with

appears. As explained i2], the power is a sum over “di-

agonal” termsP,,, and “cross” termsP,;, and the cross V3 s ~

termsP,, are usually negligible. So the measured ratio is the Im(\p)=—-e" (t/aV1+a%) (ag+ ay 1%, (18)

sum over all the modes. The factBy,(a) is the coupling of
the radiation from the first two power gain lengths into the V3 o _
guided moden. We shall describe the calculation of this Cn(g)gTef<1/av1+a2><ﬁo+ﬁl 12?) (19)
factor briefly in the following and then present it in detail in wa®
the Appendix.

The meaning of this formula is very clear: the factor where for the mode{1,0;, we have «;=0.397, a;
2LGn/LW multiplied by the spontaneous power spectrum= —0.0067, B8,=1.093, 8,=—0.02; while for the mode

(dP/dw)"" is the power spectrum of the first two power {1, =1} we have ag=1.2625, a;=—0.1494, B,=5.082,

' spon i i o e B1=—0.5707.
gain lengths(one field gain length This is then multiplied As an example for the calculation of the ratio of SASE

by a coupling factorC,(a), representing the equivalent o "the spontaneous radiation, we choose a set of param-
start-up noise as an equivalent input seed, to be amplified byia 5 \yhich give the growth rate and output power very close
a factor ge'w'te,, where the factor; represents the well ; ihe gara we used to fit the the ATF SASE experimental
known lethargy distance for an input signal to be amplifiedyaia e found that as long as we take the same rms beam
before reaching an exponential growth in a 1D~theory. size, the same current, and the same wiggler, the step-
The gain length.¢_and the coupling facto€,(a) can be  function profile model and the waterbag model have nearly
calculated, once the scaled beam sizés given, which is quatLgrthh rates. Tgel Qiffelrence fIQVItEIhefwaterbag model
defined by Eq.(6.13 of Ref. [2] as a=+2p\2kk<Ry, and the Gaussian model is also negligible for our case.
wherek,,, ks are the wiggler and radiation wave number, The parameters we used are given in 'Table |. Based on
respectively:R, the radius of the step profile; ang the these parameters, we f_ound_ the co_upllng into the fgndamen-
. 0 . S I:}al mode{1,0}, as described in detail in the Appendix, to be
Phlerce paramet?ar. '(rjhefglrlowth rat((a*pe)r wiggler perlodlln ! 0.186, the scaled growth rate INf=0.6915, and the gain
theory, given already following Eq10) in Sec. I, is also L : ' .
defined following Eq.(5) of [13] length is 0.111 m, hence the SASE over spontaneous radia-

tion ratio, according to Eq14), is
NeZoe?K2,J 3312

1 2X0.111
15
2my3k2c 19

(2p)3= ~ g0.534/0.11%, Sl
g © 0.186<—5 534

with K,ms the rms wiggler parameter, which is represented inThe increment due to the amplification is
TDA asa,, in the previous Eq(3). For helical wiggler[JJ]

in the expression fop in Eq. (15) is replaced by 1. 1 2%0.111
From Refs.[2,3], it follows that the coupling factor is (5 g0:534/0.11L 9 X0.186X —5 ===
given by '
2 Im(\,) 9 Similarly, the increment for the modd,+ 1} is
Co(a)= (16)

ma2 [hol?RAP)

2X0.16
X0.0317X ——5-

0.534/0.16 -
e 1 0532 0.08

2><1
9

The variables\,, N,,,,, andF, for a moden are calculated

as explained in detail in the Appendix, through three vari-The extra factor 2 is due to the two modes witk = 1. For
ables¢ and y and the scaled growth rade which for each higher modes, the gain factgetw/tc, is rapidly reduced to
mode n are calculated in turn by solving the set of threenearly one or, even smaller than one, and the formula Eq.

coupled equati'oils{-&lfl), (6.15, (6.19 Of_ [2], once the (14) is not valid. However, the gain for these higher modes is
scaled beam siza is given and the detunind = Aw/w is  negligible; this means that they only contribute to the spon-
assumed to be zero. . . taneous radiation, soig-w/*e,—1) for these modes can
Once the scaled growth rakg, is known, the power gain _. v b laced by 0 oo

length is given by simply be replaced by 0 as an approximation.

Notice that when there is no gain, the SASE over sponta-
N neous radiation ratio is just 1. Therefore the increment to the
Lo =— ¥ (17)  ratio, summing over the contributions from different modes,

G L

n 8mp Im(X\y) becomes
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TABLE |I. FEL Parameters used in the calculation.

Notation Waterbag Step function
Electron beam energy y 68.49 68.49
Normalized rms emittancénm mrad €n 0.7 0.7
rms energy spread o, 435104 4.35x10°4
Total current(A) lo 320 320
Wiggler parametefmax K max 0.364 0.364
Maximum magnetic field By 0.443 0.443
Wiggler length(m) Ly 0.534 0.534
Wiggler period(cm) Nw 0.088 0.088
e-beam edge radiugum) Ro 170 138
Radiation wavelengtlium) \s 1.0025 1.0000
Betatron wavelengtfim) Ag 2.96 o
Pierce parameter p 5.04x 1073 4.59x10°3
Scaled beam size a 1.61 1.25
Scaled transevese current D 1.62x10°2
Powere-folding length(m) Ly 0.112 0.110
Bessel factof JJ] 0.984 0.984
Scaled growth rate mode={0,1} Im(\p,z) 0.6214 0.6915
Scaled growth rate mode={+1,1} IM(\+1,) 0.4774

4997

0.534/0.111 1

dP/d 1
(dP/dw)sase :( 0186

=~ €
(dP/dw)gs 9

2x0111 (1
X 0534 “*|g®

2x0.16
0534

=0.98+0.08+---

X 0.0317

=1.06+---~1.1.

Hence we found the ratio to bet1.1=2.1.

0.534/0.16_ 1)

(20

distribution with parallel electron beam and step-function
profile. The focusing parameter in the code is turned off so
that there is no betatron oscillation in the wiggler and the
beam profile is kept constant.

The number of electrons withinh, =1 um is Ig\,/ec
=6.7x10°, so the output power 1:210* W, as given by
TDA3D, is multiplied by 1200/(6.% 1¢°) to get the corrected
simulation power of 2.2 W. Notice that iTDA the output is
given in the form of gain instead of power, so we must set up
an input radiation power. In our case, we set it to be
10 W, which is so small that it does not affect the output
power. Using this method, varying the current from 0 to 320
A, we plot the output power as a function of current in Fig.
2, each point being an average over 30 runs. The reason that

The calculation shows that the higher modes only contribwe choose to average over 30 runs, in addition to the prac-
ute to the spontaneous radiation, which in this particular casgical consideration about our finite CPU time, is due to a
comprise half of the output power. The other half is theconsideration based on our analytical theory about intensity
SASE power, which mostly comes from the fundamentalfluctuation[14], to be explained later in this section. Without

mode, since the contribution from the mode-{+1,1} is
much smaller. Thus the result also provides clear information
about the transverse coherence of the output: it is not com-
pletely coherent yet because half of the output is due to spon-
taneous radiation.

IV. NUMERICAL SIMULATIONS

We now apply the result of Sec. Il to check the analytical
calculation of Sec. lll. For example, we know that 1200
simulation particles per cell are sufficient to give the correct
gain lengthL;=0.11 m. For the idealized case of Sec. I
with current of 320 A and emittance of 0.7 mm mrad, we
choose the number of cells to be 61 because there are 61
periods in the wiggler, and randomly fill each cell with 1200
simulation particles. The azimuthal modes used in the calcu-
lation are fromm=—2 to m=2, i.e., five modes are used.
To simulate our idealized case of Sec. lll, a minor modifica-
tion is incorporated into thebA3D code to provide an initial

FIG. 2. Output power vs current for the step-function model.
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averaging, the relative rms fluctuation would have been ' ' ' ' '
100%. With an averaging over 30 runs, the resulting fluctua- | .
tion mimics the observed experimental fluctuation, to be dis- sk . "'
cussed later. The result shows that the power linearly in- ° %'2
creases with the current until about 100 ampere, _ | o 00% 3]
corresponding to spontaneous radiation, and deviates from% “'-.9:-;'.0”.: v
linear dependence when larger than 100 A. At 320 A, the £ .0} e e ‘.'.". i
power is a factor 2.2 larger than the linear extrapolation from £ J
the spontaneous regime. The extrapolated spontaneouss | . .“;»”‘**’ o
power is 1.0 W. = . .-{g.":a .

The power of the spontaneous radiation serves as a very 0.5 . ;'.;‘;,,»,&',51‘” > 1
reliable check of the new simulation method. The spontane- 22BN
ous radiation power spectrum in a unit solid angle in forward N e
direction and at the resonant frequency is giveri 1] . .. . . . ‘ .

5 0 50 100 150 200 250 300
_( d Pspont ) Current [A]
0=
(dolw)dQ], ., FIG. 3. Output power vs current for the waterbag model.
€Zolo , , K2 o ) respondingly the number of simulation particles to maintain
= [JJPw=5.7x10° W. the correct growth rate, the spontaneous radiation power in-

wY 2 2
4m (1+ Kinaf2) creases. When we examine Fig. 2, we can see that the simu-

(21)  lated spontaneous power is slightly lower than the theory.
This is evident particularly when the current is lower than

Within a bandwidth I¥,, the radiation opening angle is 100 A. So there will be a better agreement between the spon-
taneous radiation theory and the simulation, if we can further

6. = [eNs_ 1.93 mrad. 29 increase the numper of modes. However, due to our limited

" Lw 22 CPU time, we limited the number of modes to 5 and the

. . ) _ number of particles per cell to 1200.
This opening angle has been defined in such a way that the A5 e pointed out before, we have used a set of param-

power spectrum integrated over the full solid angle is eters very close to the zm ATF SASE experiment in the
dp idealized model. Now that we have confirmed the validity of
(ﬂt) =m702By=67 W. (23  the simulation method, to compare with the experiment more
do/w peak closely, we change to the more realistic waterbag model. The

parameters for the waterbag model are listed in Table | to-
This peak of the power spectrum is detuned at a slightlyyether with the step-function model of Sec. Ill. The wiggler
lower frequencyw from the resonant frequenays. The full  parameters and the betatron wavelength are based on the
bandwidth of the radiation as we mentioned in Sec. I, for theactual experiment, the beam current is the peak current mea-
spontaneous radiation isNy,, the same as the line spacing sured by slice measurement methd®]. The local energy
we mentioned also in Sec. Il. Thus the spontaneous radiatiogpread should be smaller than the experimenta| resolution,

power within this bandwidth and solid angle is we take it to be 4.810°3. However, the emittance was
chosen, based on the analysis of Sec. Ill, to be 0.7 mm mrad
(dpspont i =67i 11 W. (24) to fit the observed SASE power over spontaneous power
do/w peakN\,v 61 ratio, rather than the measured slice emittance of 1.4 mm

mrad. We use the universal scaling functidr,17 to cal-

This power is also called the power in the central cone. Thugulate the gain length, and compare with the simulation to
we found that it agrees with the simulation to within 10%. find the proper number of simulation particles. Since the
This is an excellent agreement, considering the approximat@&iggler is much shorter than the measured betatron wave-
nature of the simulation and the limited number of modedength(3 m), even though there is no horizontal focusing, we
and simulation particles used. can approximately assume the beam size as constant, and

Notice that the factor 2.2 also agrees with the previousapply this formula. Because the focusing is different from
analytically estimated value of 2.1 given by E@.2) excel-  the natural focusing of the wiggler, the gain length of 0.112
lently, supporting both the simulation and the approximationm is calculated using the formula given[ib7] instead of the
made in applying the analytical theory. In Fig. 2 we also plotformula in[13], which is adequate for natural focusing while
the analytical calculation based on the description of Sec. lllthe formula in Ref[17] is more general and is also valid
with the calculated ratio multiplied by the calculated spontaiwhen the focusing is different from natural focusing. The
neous power in the central cofwhich is 1.1 W for 320 A,  result is given in Fig. 3, which is very similar to the idealized
as mentioned aboyelt shows again an excellent agreement.model. This means that our analytical calculation using the
Similar calculations have been done for various currents anitlealized model provides a very convenient tool to check the
emittances, and for wiggler lengths fromL§ to 10, and  simulation and analyze the experiment, as long as we use the
the results always agree with the analytical estimate. Weame wiggler, the same beam current, and the same rms
found that when we increase the number of modes and cobeam size.
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12 g mental finding of the ratio 1.9 of the SASE pulse energy over
o ® e the spontaneous radiation, the emittance should be 0.7 mm

1.0 A & s mrad. The result is very sensitive to the emittance. For ex-
." e °* ample, if the emittance increases to 1 mm mrad, the ratio

0.8 1 . o * drops to 1.5. The measured global emittance is 2.4 mm mrad,
s * while the measured slice emittance is 1.4 mm mrad. How-

ever, this deviation from calculation is not an inconsistency
because as the experimental group explairi&l, the mea-
surement could be a pessimistic one, i.e., the realistic distri-
bution could be such that both the longitudinal and trans-
verse tails of the phase space distribution contribute
significantly to the emittance measurement, but would not
have much influence on the performance of the FEL interac-
tion. Therefore our results raise a challenge to the further
improvement of the emittance measurement, or phase space
Charge [nC] distribution measurement technique, and also more detailed
analysis of the effect of the phase space distribution.
Finally, we shall explain why we averaged over 30 runs

_ i _ for each point in Figs. 2 and 3. Recently, to explain the

_As a minor detail, notice that to have the same rms beanhensity fluctuation in the experiment, we developed a 3D
size, the edge radius of the step-function model should bgnaytical theonyf14], the result shows that the fluctuation is
Rstep= 20%= £Ryate= 138 um, whereo, is the rms beam given by
size andR,er the edge beam size for the waterbag model.

Wiggler Emission [pJ]

0.0 0.2 04 0.6 0.8

FIG. 4. Output pulse energy vs charge of the ATF experiment.

Also notice that because the Pierce paramgtés slightly oy 1

different for the step-function model and the waterbag W NI (25)
model, the scaled beam sizes for the two models are related ¢

by Estepz(é)l’ﬁéwaterzl.ZS. where g, is the rms fluctuation of the output SASE energy

For a comparison, the ATF experimental dffs8] are W per pulse| is the length of a flat-top pulse, ard is a
plotted in Fig. 4, showing the pulse energy as a function ofcorrelation length characterizing SASE coherence. We find
the electron bunch charge. The measurement has a band-
width of 25 nm, corresponding to a relative bandwidth of | =N\ (2_7”-_6
25 nm/1um=1/40. The opening angle is 1.2 mrad, which is ¢ WS 3 Ly,
smaller than the opening angle of the radiation for a fixed
frequency given by Eq22), i.e., 1.9 mrad. Hence within this WhereN,, is the number of undulator periods, is the ra-
observation angle, the bandwidth isN}/=1/60<1/40. diation wavelengthl,, the undulator length, antlg is the
Therefore the bandwidth is not reduced by the measuremerigower e-folding length.
but the solid angle is reduced by a factor (1.2/3:9).4. In the recent BNL ATF SASE experiment the gain length
The spontaneous radiation power, according to our calculdS about 0.11 m according to our analysis, i.e., the wiggler
tion, should be 1.%¥0.4=0.44 W. To calculate the pulse en- has 4.9 gain length, 60 periods. So the slippage iu60
ergy, we use the width of the central part of the measure@nd the coherence length is reduced tou80//3/2m X 4.9
pulse, about 2 ps, because most of the SASE energy comes40 um. The pulse length is measured to be about 4 ps, i.e.,
from the peak part, and from the slice measurenmi#8fwe  about 1300um, so the number of coherence length in the
get 2 ps. So the pulse energy is estimated to bex02441.9  electron bunch is 130pm/40 um~30. The SASE theory
=1.6 pJ. The ratio 1.9 is taken from Fig. 3. In Fig. 3 thetold us that the output can be approximated by the sum of 30
simulation gives 0.8 W as the spontaneous radiation poweindependently evolved spikes in the single bunch. Therefore,
but we use the calculated 1.1 W instead; this is because w@ simulate the fluctuation we averaged over 30 runs to give
know that when we increase the number of modes, the resuitach point in Figs. 2 and 3. The fluctuatier, /(W) is
approaches the correct value of 1.1 W, while we found thatalculated to be about{40/1308=17%. This is consistent
the ratio of 1.9 is insensitive to the number of modes. Thewith the measured fluctuation of about 15%, considering that
measured pulse energy at the maximum charge, correspontiie pulse shape is actually not a step function and the calcu-
ing to 320 A of peak current, is calibrated to be 1.1 pJ.lated beam size is not really large enough to be near the 1D
Taking into account the approximate nature of all these estilimit.
mates, this is a reasonable agreement.

112
: (26)

To further check the new simulation method for SASE, V. CONCLUSION
we compared with the result of a run using the time- _
dependent codeINGER, provided by Fawley8]. The result We have developed two very different methods to calcu-

is consistent with thesINGER calculation, but we cannot late the SASE output power: the numerical simulation of
claim a rigorous confirmation, because the random nature ofPA3D using the scaling relation, and the analytical method.
the SASE output requires a much larger number of runs of e two methods agree with each other very well. The cal-
the codeGINGER to give sufficient statistics. culation has been used to analyze the recent ATkni

The analytical analysis shows that to achieve the experiSASE experiment. Since the scaled beam sizs of order
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one, the case is clearly a three-dimensional case, a 1D analy- 3(x) H(1)/(¢)

sis is not appropriate. Our new methods of three-dimensional % m2r Tl) ,

calculation provide a very useful tool to analyze the recent Im(X) Hn'(¢)

SASE experiments. ~ o~
We provide a very detailed description of the calculation 2 2 1-92 Ci _a

in the hope that a reader should be able to apply the methods PX= A2 p“éz %

to carry out the calculation of SASE without going through

the detailed derivation in the previous papesS]. However, »?

we also provide detailed references to our previous works so A==+ A,

that a reader, who is interested in the details of the deriva- a

tion, can follow it step by step. whereJ(x), HM(¢) are Bessel function and Hankel func-

tion, respectively\ is the scaled growth rate, arklis the
scaled detuning, taken to be zero for our case. The mode
numbern is determined by the initial trial value of the solu-

The author would like to thank Dr. S. Krinsky for many tjon, which is known for large.. The solution for smallea

discussions and suggestions. The author also thanks Dr. g : o : :
: > X IS obtained by gradually reducirey, using the previous so-
Ben-Zvi for many discussions on the recent SASE experi- . . y g y .rmg, .g p'
éutlon for slightly largera as trial solution. Notice that the

ment at ATF, and his many suggestions. We would also lik . S
to thank Dr. W. Fawley for providing the simulation results se_cond equatiofEq. (6‘.14) of [2]] is simplified as compared
with Ref.[2] because is very small.

from GINGERto test our new simulation approach. This work
was performed under the auspices of the U.S. Department of 11N Nnn,Fn are calculated by
Energy. (E=&)7  (x*)?  (¢4%)
Non=4— 57 = 7 s (VN
87 [ax*—x*))P 9 ¢
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APPENDIX: CALCULATION DETAILS

FOR THE GUIDED MODES F ¢2 1+ X2 2
As explained i 2], to calculate the coupling coefficients, " ¢ —x EZ AZ
given the scaled beam size we first solve the following  with
coupled equations for the three variabjgse, and\ for a
mode specified by={m,j}, with an azimuthal node num- _ Ji(x)
ber m, and a radial node numbgr using Newton’s root :XJm(X)'

finding routine. Using a software such as Mathematica, the . _
calculation is not much more than copying the following ~Even though these expressions seem rather complicated,
equations, and then using the command “FindRoot” in atheir physical meaning is clarified {i8] for large and small

mathematical calculation: beam size limit, i.e., foa>1, ora<1.
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