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Calculation of the output power in self-amplified spontaneous radiation
using scaling of power with number of simulation particles

Li Hua Yu
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973

~Received 10 December 1997; revised manuscript received 1 July 1998!

Recent advances in self-amplified spontaneous emission~SASE! experiments stimulate interest in quantita-
tive comparison of measurements with theory. In this paper we show that the widely used simulation code
TDA3D, developed by Tran and Wurtele@Comput. Phys. Commun.54, 263 ~1989!# even though a single
frequency code, can be used to determine the output power in the SASE process with excellent approximation
in the exponential growth regime. The method applies when the gain is not very high, which is a special
advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the
exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power
and the number of simulation particles in the codeTDA3D: ^P&5 Nl8/Nl^P8&, where^P& is the output power
andNl is the line density of the electrons, while^P8& is the calculated output power using a line densityNl8
of the number of simulation particles in the codeTDA3D. Because of the scaling property, the number of
simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison
of our results with experiment yields new insight into the SASE process.@S1063-651X~98!08110-0#

PACS number~s!: 52.75.Ms
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I. INTRODUCTION

Recently, there have been a number of experimental d
onstrations of self-amplified spontaneous emission~SASE!
@1#. All of them measured the SASE radiation pulse ene
as a function of pulse charge, showing a deviation from
ear dependence. A comparison of these results with sim
tion and analytical theory is urgently needed.

The theory on the average power, bandwidth, and tra
verse mode expansion for SASE was developed years
@2–7#. A consistent one-dimensional~1D! SASE theory in-
corporating the equations of motion of the electrons and
Maxwell equations together and solving the initial val
problem was derived in Refs.@4,5#. The theory was extende
to a 3D case in Refs.@6,2#. In Ref. @2# the 3D problem for a
parallel electron beam was explicitly solved so that it can
applied directly for a quantitative comparison with simu
tions. Also, a method was developed to investigate the tra
verse coherence of the output radiation, relating it to
degeneracy of the guided modes@2,3#. The theory was also
formulated in a way allowing analysis of the problem wi
finite energy spread. In Ref.@3# the equivalent noise powe
was identified as the wiggler radiation in the first two pow
gain lengths. The shot noise formula was derived for be
sizes ranging from the large to the small beam size lim
and the coupling of shot noise into different guided mod
was determined. Later, this result was extended to incl
the effect of the angular divergence of the electrons@7#. The
theory @2,3# is appropriate for comparison with the rece
experiment.

However, there are limitations on the applicability of th
analytic theory, especially when the gain is not sufficien
high to assume that the exponentially growing terms do
nate. Also, when the electron beam is not matched to
focusing of the wiggler, the electron beam size is not c
stant in the wiggler, as is the case for a recent 1mm SASE
PRE 581063-651X/98/58~4!/4991~10!/$15.00
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experiment at the Accelerator Test Facility~ATF! at
Brookhaven National Laboratory and several others, the a
lytic estimates are not accurate. Hence, a simulation is v
useful in these cases. There are simulation codes taking
account broad bandwidth that can be used to simulate SA
for example, the well known codeGINGER @8#. These codes
take much longer running time than the single frequen
codeTDA3D @12#, developed by Tran and Wurtele. Hence,
would be very useful if one can use the familiar and re
tively simpler codeTDA3D to simulate the SASE process.

In this paper we shall show that theTDA3D code, which
has been modified to include harmonic generation calc
tion, can be directly used for this purpose. One reason
this is possible is that in the linear regime there is a v
simple scaling relation between the number of simulat
particles and the output power. Hence, the number of sim
lation particles can be made much smaller than the ac
number of electrons in the beam, making the simulat
practical. In this paper we derive the scaling relation fo
parallel electron beam, and then test it by simulation. W
also found by simulation that for a beam with finite em
tance, and even for an unmatched beam, the scaling rela
is still valid. This indicates the general validity of the sca
ing. We shall show that although this method does not p
vide all the information for different aspects of the SAS
process, it turns out to give an excellent approximation
the output power.

As a test, the ratio of the SASE radiation spectrum to
spontaneous radiation spectrum is calculated for an ideal
parallel beam by both the analytical theory developed
Refs.@2,3# and the numerical methods developed here us
the codeTDA3D. These two very different methods agre
with each other very well, strongly supporting their validit

It is clear from this discussion that this method uses
entirely different approach to reduce the number of simu
tion particles as compared with the simulation codes such
GINGER. We shall briefly compare these two approaches.
4991 © 1998 The American Physical Society
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As explained in Ref.@9#, the codes such asGINGER use an
artificial initial distribution to simulate the SASE start-u
process. To suppress the increased shot noise due to the
ited number of simulation particles, the codes are based
distribution with equally spaced particles. To introduce
controlled noise, they generate a random deviation fr
the equally spaced distribution with a controlled rms va
of the displacements. The rms displacement is chosen
reproduce the same mean and variance of the quantity’’@9#
^exp(2iu)&5 (1/N) S j 51

N exp(2iuj), whereu j is the pondero-
motive phase of the particlej , andN is the total number of
electrons, ‘‘using, instead of the real distribution and num
N of electrons, an artificial distribution with a much small
numbern. ’’ While the mean and variance of the releva
quantity simulate the initial status of the system, it is n
evident that the higher moments of this quantity would n
affect the high gain process, it is also not evident that
mean and variance of the relevant quantity would remain
be the same as the realistic distribution during the high g
process, even though the simulations did show an agreem
with the linear high gain theory.

As compared with these codes, our method uses a rea
distribution instead of an artificial evenly spaced distributio
We do not attempt to suppress the noise due to the lim
number of simulation particles. Rather, we use the sca
relation to go from the simulation case with increas
start-up noise~due to the reduced number of simulation pa
ticles! to the realistic case. In this manner, we obtain
correct radiation power in the linear regime. Another diffe
ence is that our method uses single frequency codes suc
TDA3D, instead of the multifrequency or time-depende
codes to carry out the calculation,~the reason we can use
single frequency code to calculate for an intrinsically broa
band SASE process will be explained in Sec. II!. Our method
does not require a modification to the single frequen
codes, and hence can be used directly by anyone fam
with the codeTDA3D. Because these codes are time indep
dent, they need much shorter CPU time than the tim
dependent codes.

There is a disadvantage associated with our method,
it only applies to the linear regime, not the saturation regim
However, the fact that this method needs much shorter C
time and that many people are more familiar with the sin
frequency codes such asTDA3D than with time-dependen
codes makes our method a useful complementary appr
to the problem.

In this paper we assume the electron bunch is sufficie
long and the bunch shape is sufficiently smooth, so the
herent spontaneous emission~CSE! from the detailed struc-
ture in the bunch of order of the radiation wavelength
negligible. In short, we discuss incoherent self-amplifi
spontaneous emission, starting from shout noise. In an ac
experiment, one should use experimental technique to dis
guish CSE and SASE. One example of the experime
method to rule out the existence of CSE is to show that in
experiment there is no enhancement to the transition ra
tion due to coherent transition radiation in the wavelen
range of interest. If one can rule out the existence of the C
in an experiment, the method developed here can then
applied.

In Sec. II, we first explain why a single frequency co
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can be used to calculate SASE power, which has intrinsic
a finite bandwidth. Then we explain why the output pow
scales inversely with the number of simulation particles
the codeTDA3D. Next, in Sec. III we describe an analytica
estimate of the output power from a free-electron laser~FEL!
with an idealized parallel electron beam with step-functi
transverse profile. Finally, in Sec. IV we present the co
parison of the numerical and the analytical methods, then
apply the method to the practical case of the 1mm SASE
experiment at ATF of BNL.

II. THE SCALING RELATION
AND THE NUMERICAL SIMULATION

First, we shall explain why a single frequency codeTDA3D

can be used to calculate the output power of SASE, a p
nomenon with finite bandwidth. Later, we will show ho
one can use very few simulation particles to simulate
experiment with a huge number of electrons, by deriving
scaling relation between power and the number of simula
particles.

In the originalTDA code, all the simulation particles ar
limited to within one optical wavelength, or one cell. Durin
a later modification of the code for harmonic generation c
culation@10#, we extended the code such that the simulat
particles could be in an arbitrary number of wavelengths
is easy to see that if the number of cells isnl , then the code
is describing a fictitious electron-beam distribution with lo
gitudinal periodic structure ofnl optical wavelengths. Tha
is, we artificially set a periodic boundary condition on th
electron beam with period equal tonl optical wavelengths. In
this case, the radiation spectrum has a line structure w
frequency spacingvs /nl , wherevs is the optical frequency.

To illustrate this point we plot the power spectrum
spontaneous radiation in Fig. 1. When the distribution is n
periodic, the spontaneous radiation spectrum from a wigg
with Nw510 periods is a continuum as shown by Fig. 1~A!,
with a width of vs /Nw5vs/10. When we artificially intro-
duce a fictitious periodic structure in the electron-beam d
tribution, the radiation has a line structure, as shown by F
1~B!–1~D! for three different cases. The total power is t
sum of the height of the lines. We denote the slippage d
tance byl s5Nwls , and the distribution period byl 5nlls ,
then Fig. 1~B! corresponds to the casel @ l s , the line spacing
vs /nl is much narrower than the spontaneous radiat
width vs /Nw , and the dense line structure gives a profile
the spontaneous spectrum of Fig. 1~A!. Figure 1~C! is for a
case wherel 52l s , and there are only two lines left. Whe
we choose the period to be equal to the slippage distanl
5 l s , i.e., whennl5Nw , the line spacing is equal to th
radiation spectrum width, and hence there is only one line
shown in Fig. 1~D!.

The codeTDA3D, developed fromTDA, only describes a
monochromatic radiation beam, i.e., the Maxwell equation
reduced to describe a single frequencyvs . To rigorously
describe SASE, the code should be further modified to
clude other frequencies such asvs(nl21)/nl , vs(nl
11)/nl , etc. Now, if we choosenl to be equal to, or larger
than, the number of periodsNw in the wiggler, the slippage
Nwls is smaller than the spacing between the perio
boundaries of the electron beam. Hence there is no inte
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FIG. 1. ~a! Illustration of the spontaneous power spectrum of a nonperiodic structures.~b! Line spectrum of a structure with period muc
longer than the slippage distance. In this casedP/dv 5(n52`

` Pnd(v2nDv), whereDv5 vs /nl . We plot Pn vs nDv (nl@Nw). ~c!
Distribution periodl two times longer than the slippage distancel s (nl52Nw). ~d! Distribution periodl equal to the slippage distancel s

(nl5Nw).
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tion between any two of the idealized periods of the elect
distribution. If we combine the contributions from all th
frequency lines, the calculated output energy within one i
alized period of the electron distribution is the same a
would be from a nonperiodic structure in the electron bea
i.e., the same as for the realistic case for SASE process.
output power in one of the many lines is the power within
bandwidth of 1/Nw centered around that line, or more pr
cisely, the power spectrum times the bandwidthv/Nw :
(vs/Nw)(dr/dv).

Now from the 1D analytic theory of SASE, we know th
the rms bandwidth of the SASE spectrum is@4,5#

sv

v
5S 3&r

kwLw
D 1/2

, ~1!

wherer is the Pierce parameter@11#, kw the wiggler wave
number,Lw the wiggler length. For convenience, we sh
rewrite the width in terms of a ‘‘full width,’’ which is de-
fined so that when it is multiplied by the peak power sp
trum dP/dv it gives the total power. Using the 1D gai
length formula@11# LG5lw/4pr) , we find the full width
is (1/Nw)ALw3/4pLG>(1/Nw)ALw/4LG. This width is nar-
rower than 2/Nw as long asLw,16LG . So when the wiggler
length is much shorter than 16 power gain lengths, if
choosenl to be equal to the number of periodsNw , to good
approximation there is only one line within the bandwid
centered around the resonant frequency. Therefore when
wiggler length is much shorter than 16 power gain leng
TDA3D serves as a good approximation to the output po
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even though it handles only one single spectral line, and d
not provide all the information about the spectrum.

Next, we shall explain why we can use only a small nu
ber of simulation particles to study the SASE effect while t
actual number of electrons is many orders of magnitu
more than a computer memory can handle. In the followi
we shall show that during the exponential growth befo
saturation, the average output power is inversely prop
tional to the number of simulation particles in an optic
wavelength. That is, we can calculate the average ou
power ^P& using the averaged simulation output pow
^P8&:

^P&5
N l8

Nl
^P8&, ~2!

whereNl and Nl8 are the line density of the electrons an
simulation particles, respectively, or, equivalently, w
choose them to be the number of electrons and simula
particles within one optical wavelength, respectively.

We would like to elaborate a little about the meaning
the ‘‘simulation particles’’ here. On the right hand side of th
Maxwell equation, the simulation particles used inTDA be-
have like macro particles, each carrying charge much lar
than the actual electron, so that their density distribution p
vides an average charge density equal to the actual ch
density. However, in Newton’s equations of motion, th
follow the same motion as if they are actual electrons e
with the same charge as a single electron. Therefore
concept of ‘‘simulation particle’’ is a mathematical abstra
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tion, which is unphysical but useful in the calculation. T
more quantitative meaning of this concept will become cl
during the following derivation of the scaling relation.

Before deriving this result for a special case when
angular divergence and energy spread of the electron b
are zero, we point out that this conclusion has been veri
for many cases with finite energy spread and emittance
direct simulation after averaging over many runs with diffe
ent initial random electron distributions.

To derive the scaling relation of output power with th
number of simulation particles, we first write down the Ma
well equation in the form used in the codeTDA @12#:

S ]

]z
1

1

2iks
¹'

2 Dase
ifs5 i

eZ0

mc2

@JJ#

2ks

I 0

Nl
(
j 51

Nl

d~x2xj !

3d~y2yj !aw~xj ,yj !
e2 iu j

g j
,

~3!

wherease
ifs is the dimensionless slowly varying amplitud

and phase of the radiation signal,aw is the wiggler’s dimen-
sionless vector potential,ks the wave number of the radia
tion, I 0 the beam current,u j is the ponderomotive phase o
the electronj , g j the energy of the electronj , Z05377 V
the vacuum impedance, and@JJ# the Bessel factor. We
would like to apologize here for the possible confusion d
to the mixed notations introduced from the two referen
@2,12#; we used notations from both references because
essential we compare the equations in these two referenc
derive the scaling relation. We emphasize that during
derivation of Eq.~3! from the Maxwell equation, with a care
ful examination, we found that if the sum is over the numb
of electronsNl within a certain longitudinal distance, suc
as over a ponderomotive periodl r in the example here, the
currentI 0 has to be also divided byNl as shown on the righ
hand side of Eq.~3!. If we increase the distance tonl periods,
i.e., sum overnl cells, the denominator should be replaced
nlNl . However, in actual calculation, this number must
replaced by a much smaller numberNl8 , the number of
simulation particles. InTDA, the Maxwell equation~3! is
coupled with the equations of motion of the simulation p
ticles. As we move along the wiggler by increasingz in one
step, the code uses the field value and the dynamic varia
of the simulation particles to trace the new values at the n
step, using these equations. We emphasize that in theTDA

code, when we replaceNl by Nl8 , all the other parameter
such as the currentI 0 are kept the same, so the only chang

are to replace (1/Nl) ( j 51
Nl by (1/Nl8) (

j 51
Nl8 in the Maxwell

equation and to traceNl8 equations of motion of the particle
instead ofNl . We shall show now that this replacement w
not change the growth rate, but will increase the shot no
inversely proportional toNl8 .

In Ref. @2# we derived the start-up noise by the coupl
Maxwell and Vlasov equations. The Maxwell equation co
responding to Eq.~3! is written in the form†see Eq.~2.23! of
Ref. @2#‡

S ]

]t
1

]

]z
2 i¹'

2 DE5D1e2 i zE dg

g
f , ~4!
r

e
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wheret5kwz, and, as in Ref.@2#, we usez to represent the
ponderomotive phase~while in TDA @12# u is used!. E is the
slowly varying amplitude and phase of the electric field, c
responding toase

ifs of Eq. ~3! of TDA. f is the electron
distribution function normalized so thatn0* f dg is the elec-
tron density, wheren0 is the peak electron density. Notic
that the definition of the transverse Laplacian¹'

2 in Ref. @2#
is different from that in Eq.~3!: the transverse coordinate
are scaled as

xW5A2kskwrW, ~5!

as defined by Eq.~2.20! of Ref. @2#. D1 is a constant given
by

D15
m0n0e2cAw@JJ#

2mkw
, ~6!

whereAw is the maximum value of the vector potential
the wiggler magnetic field,m0 the vacuum permeability. Fo
a helical wiggler, replacing@JJ# by 1 in D1 , this becomes
identical to Eq.~2.25! of Ref. @2#.

The Vlasov equation is†see Eq.~2.24! of Ref. @2# and the
explanation following it‡

] f

]t
1h

] f

]z
5D2Eei z

1

g

] f 0

]g
, ~7!

whereh512 g0
2/g2 is the energy deviation from the reso

nant energy, andD2 is given by†for helical wiggler, replace
@JJ# by 2, not 1, as seen from Eq.~2.26! of Ref. @2#‡

D25
e2A

w
@JJ#

4m2c3kw
, ~8!

and f 0 is the smoothed undisturbed initial distribution fun
tion Eq. ~2.21! of Ref. @2#:

f 05u„z,x…d~g2g0!, ~9!

whereu is the transverse profile. For a step-function profi
it is simply the step function. In Ref.@2# the Maxwell equa-
tion @Eq. ~4!# and the Vlasov equation@Eq. ~7!# are coupled
to eliminate the distribution functionf , resulting in a third
order partial differential equation, the envelope equation
the electric field†Eq. ~2.39! of Ref. @2#‡:

]2

]t2 S ]

]t
1

]

]z
2 i¹'

2 DE5~2r!3S ]

]t
1

]

]z
1 i D uE,

~10!

where the Pierce parameter@11#, as we mentioned before, i
given by (2r)352D1D2 /g0

3 . This is a homogeneous equa
tion, and its Green function and hence the growth rate of
system are determined by the Pierce parameterr and the
profile functionu. The solution of this envelope equation
obtained from the Green function and the initial condition
In the special case of SASE, the initial condition is set by
initial distribution functionf .

The main point now is the observation that the te
e2 i z* f dg in Eq. ~4! corresponds to the sum
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(1/Nl) ( j 51
Nl e2 iu j in TDA code @Eq. ~3!#. When the sum

(1/Nl) ( j 51
Nl in TDA is replaced by (1/Nl8) (

j 51
Nl8 , the con-

stants in front of the sum in Eq.~3! are not changed. In
particular, the currentI 0 is not changed. In the Maxwell
Vlasov equation analytical approach, this replacement co
sponds to a replacement of the particle densityn0 in the term
e2 i z* f dg in Eq. ~4! by

n085
Nl8

Nl
n0 . ~11!

However, in Eq.~4!, the constantD1 in front of e2 i z* f dg is
not changed, i.e., the densityn0 in the expression ofD1 in
Eq. ~6! is not replaced byn08 .

In the derivation of start-up from shot noise in Ref.@2# we
used the initial distribution†see Eq.~5.3! of Ref. @2#‡

f ~t50!5
1

n0
( d~z2zj !d~r2r j !d~g2g0!. ~12!

The replacement ofNl by Nl8 in TDA3D corresponds to re
placing n0 in this initial condition byn08 , as given in Eq.
~11!. Similarly in the Vlasov equation~7!, the only change is
the density of the distributionf , the constantD2 , and the
smoothed distribution functionf 0 , and hence the profile
function u is not changed. Because when we replace
densityn0 of the functionf by n08 , the constantsD1 , D2 and
the beam transverse profileu in the coupled Maxwell-Vlasov
equation are not changed, and during the derivation of
envelope equation@Eq. ~10!# the functionf is eliminated, the
resulting envelope equation is left unchanged. Therefore
replacement ofNl by Nl8 in TDA3D does not correspond to
change in the envelope equation~10!. Therefore the growth
rate and Green function of the system remain unchange

It is clear from this discussion that only the initial cond
tion is changed, and the growth rate and Green function
the system do not change. Based on this analysis, we
traced step by step the shot noise derivation of Ref.@2# †from
Eq. ~5.1! to Eq. ~5.16! of Sec. V of Ref.@2#‡, to make sure
that the parametern0 associated with the initial conditionf ,
Eq. ~12!, always be replaced byn08 , but the same paramete
n0 that appeared inD1 does not change. The derivation
straightforward but tedious, as described in detail in Sec
of Ref. @2#, so we shall not duplicate it, but only give a bri
description here. The basic idea of the derivation is that
contribution to the radiation field from each particle sta
from a d function determined by the initial distribution Eq
~12!, then evolves during the FEL interaction according
the Green functionġ †Eq. ~4.10! of Ref. @2#‡, determined by
the coupled Maxwell-Vlasov equations. The output field
then a sum of these contributions. Therefore the replacem
of Nl by Nl8 in TDA3D corresponds to the replacement ofS
by S8 in our analytical derivation, where the prime in th
sum indicates that the sum is over a random distribution w
densityn08 instead ofn0 . Thus, for example, the electric fiel
E is given †see Eq.~5.8! of Ref. @2#‡ by

E~t,z,xW!5
bk

n08
( 8e2 i z j ġ~t,z2z j ,xW,xW j !. ~13!
e-

e

e

e

of
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e
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h

This can be obtained simply by replacing eachd function in
the initial condition Eq.~12! by the corresponding Gree
function ġ with a corresponding phase factor, replaci

(1/Nl) ( j 51
Nl by (1/Nl8) (

j 51
Nl8 , and then multiplying by a con-

stant. For simplicity, we shall not quote the constantsb, k

and the Green functionġ here, and only refer to Eqs.~5.5!,
~5.6!, and ~4.2!, ~4.13! of Ref. @2#, because they are not es
sential for our conclusion about the scaling relation here.
only emphasize that the densityn0 found ink of Eq. ~5.6! of
Ref. @2# remains to ben0 , not to be replaced byn08 . xW is the
scaled transverse position given by Eq.~5!. Finally, using the
electric field Eq.~13!, and the fact that the density in the su
S8 is n08 instead ofn0 , we find the output power†see Eqs.
~5.10!, ~5.14!, and~5.15b! of Ref. @2#‡

^P8&5
ksk

2

Z0n08
E d2xE d2x1E dzuġ~z2z1 ,xW,xW1!u2u~xW1!.

The only difference of this result from Ref.@2# is the replace-
ment ofn0 by n08 . Hence, using this equation and the relati
Eq. ~11! betweenn0 andn08 , we immediately find the scaling
result

^P&5
Nl8

Nl
^P8&.

This scaling relation and the discussion about how to
the single frequency code to calculate output power mak
possible for us to calculate the SASE power byTDA3D.

III. THE ANALYTICAL ESTIMATE

To test the simulation, we need an analytical estima
Our analytical estimate for start-up noise is based on a
theory@2,3# for an electron beam with a step-function profil
zero energy spread, and zero angular spread. We use
idealized model here because this problem has been so
explicitly. We apply the newly developed simulation meth
to the same case, to check the accuracy of the simulation
addition, as a by-product, we found that this idealized mo
can be used for estimating the start-up noise of the 1mm
SASE experiment at ATF of BNL@1#. The geometrical emit-
tance in this case is much smaller than the wavelength
vided by 2p, and the betatron wavelength~3 m! is much
longer than two power gain lengths (;0.2 m), resulting in
negligible betatron motion during the start-up process. If
choose the beam radius such that it has the same rms b
size and same current, then the model has a growth rate q
close to that of the more realistic waterbag model. In Sec.
we shall see that when we choose this idealized set of
rameters, the analytical estimate agrees very well with
simulation results, providing support for the validity of th
simulation.

Based on the analysis of Refs.@2,3#, the ratio of SASE
radiation spectrum in the guided moden over spontaneous
radiation spectrum is given by

~dPnn /dv!SASE

~dP/dv!spon
Lw

5
1

9
eLw /LGnCn~ ã!

2LGn

Lw
, ~14!
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where Lw is the wiggler length, andPnn and LGn
are the

output power and the power gain length in the guided m
n, respectively. The labeln used here actually represents
index, which could be a set of several discrete indexes.
example, it could be$ j ,m%, wherem is the azimuthal node
number andj the radial node number. So the notation ‘‘n’’
should be understood as appropriate for the text wher
appears. As explained in@2#, the power is a sum over ‘‘di-
agonal’’ termsPnn and ‘‘cross’’ termsPnl , and the cross
termsPnl are usually negligible. So the measured ratio is
sum over all the modes. The factorCn(ã) is the coupling of
the radiation from the first two power gain lengths into t
guided moden. We shall describe the calculation of th
factor briefly in the following and then present it in detail
the Appendix.

The meaning of this formula is very clear: the fact
2LGn

/Lw multiplied by the spontaneous power spectru

(dP/dv)spon
Lw is the power spectrum of the first two pow

gain lengths~one field gain length!. This is then multiplied
by a coupling factorCn(ã), representing the equivalen
start-up noise as an equivalent input seed, to be amplifie
a factor 1

9 eLw /LGn, where the factor19 represents the wel
known lethargy distance for an input signal to be amplifi
before reaching an exponential growth in a 1D theory.

The gain lengthLGn
and the coupling factorCn(ã) can be

calculated, once the scaled beam sizeã is given, which is
defined by Eq.~6.13! of Ref. @2# as ã5A2rA2kwksR0 ,
where kw , ks are the wiggler and radiation wave numbe
respectively;R0 the radius of the step profile; andr the
Pierce parameter. The growth rate per wiggler period in
theory, given already following Eq.~10! in Sec. I, is also
defined following Eq.~5! of @13#:

~2r!35
n0Z0e2K rms

2 @JJ#2

2mg3kw
2 c

, ~15!

with K rms the rms wiggler parameter, which is represented
TDA asaw in the previous Eq.~3!. For helical wiggler,@JJ#
in the expression forr in Eq. ~15! is replaced by 1.

From Refs.@2,3#, it follows that the coupling factor is
given by

Cn~ ã!5S 2

pã2

Im~ln!

ulnu2 Nnn

9

uFnu2D . ~16!

The variablesln , Nnn , andFn for a moden are calculated
as explained in detail in the Appendix, through three va
ablesf andx and the scaled growth ratel, which for each
mode n are calculated in turn by solving the set of thr
coupled equations~6.14!, ~6.15!, ~6.16! of @2#, once the
scaled beam sizeã is given and the detuningD5 Dv/v is
assumed to be zero.

Once the scaled growth rateln is known, the power gain
length is given by

LGn
5

lw

8pr Im~ln!
, ~17!
e

or

it

e

by

,

D

n

-

wherelw is the wiggler period.
The variablesNnn andFn in the parentheses are then ca

culated by Eqs.~6.31! and ~6.30! of @2#, respectively. These
expressions are complicated but the calculation is straight
ward and is given in the Appendix. To a good approxim
tion, when ã.0.25 the calculated results forCn(ã) and
Im(ln) as functions ofã are fit with

Im~ln!>
)

2
e2 ~1/ãA11ã2! ~a01a1 1/ã2!, ~18!

Cn~ ã!>
)

pã2
e2 ~1/ãA11ã2! ~b01b1 1/ã2!, ~19!

where for the mode$1,0%, we have a050.397, a1
520.0067, b051.093, b1520.02; while for the mode
$1,61% we have a051.2625, a1520.1494, b055.082,
b1520.5707.

As an example for the calculation of the ratio of SAS
over the spontaneous radiation, we choose a set of pa
eters which give the growth rate and output power very cl
to the data we used to fit the the ATF SASE experimen
data. We found that as long as we take the same rms b
size, the same current, and the same wiggler, the s
function profile model and the waterbag model have nea
equal growth rates. The difference for the waterbag mo
and the Gaussian model is also negligible for our case.

The parameters we used are given in Table I. Based
these parameters, we found the coupling into the fundam
tal mode$1,0%, as described in detail in the Appendix, to b
0.186, the scaled growth rate Im(ln)50.6915, and the gain
length is 0.111 m, hence the SASE over spontaneous ra
tion ratio, according to Eq.~14!, is

1

9
e0.534/0.11130.1863

230.111

0.534
51.06.

The increment due to the amplification is

S 1

9
e0.534/0.11121D30.1863

230.111

0.534
50.98.

Similarly, the increment for the mode$1,61% is

23S 1

9
e0.534/0.1621D30.03173

230.16

0.534
50.08.

The extra factor 2 is due to the two modes withm561. For
higher modes, the gain factor1

9 eLw /LGn is rapidly reduced to
nearly one or even smaller than one, and the formula
~14! is not valid. However, the gain for these higher modes
negligible; this means that they only contribute to the sp

taneous radiation, so (1
9 eLw /LGn21) for these modes can

simply be replaced by 0 as an approximation.
Notice that when there is no gain, the SASE over spon

neous radiation ratio is just 1. Therefore the increment to
ratio, summing over the contributions from different mode
becomes



PRE 58 4997CALCULATION OF THE OUTPUT POWER IN SELF- . . .
TABLE I. FEL Parameters used in the calculation.

Notation Waterbag Step function

Electron beam energy g 68.49 68.49
Normalized rms emittance~mm mrad! en 0.7 0.7
rms energy spread sg 4.3531024 4.3531024

Total current~A! I 0 320 320
Wiggler parameter~max! Kmax 0.364 0.364
Maximum magnetic field Bw 0.443 0.443
Wiggler length~m! Lw 0.534 0.534
Wiggler period~cm! lw 0.088 0.088
e-beam edge radius~mm! R0 170 138
Radiation wavelength~mm! ls 1.0025 1.0000
Betatron wavelength~m! lb 2.96 `

Pierce parameter r 5.0431023 4.5931023

Scaled beam size ã 1.61 1.25

Scaled transevese current D 1.6231022

Powere-folding length~m! Lw 0.112 0.110
Bessel factor@JJ# 0.984 0.984
Scaled growth rate moden5$0,1% Im(l$0,1%) 0.6214 0.6915
Scaled growth rate moden5$61,1% Im(l$61,1%) 0.4774
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~dP/dv!SASE

~dP/dv!spon
Lw

215S 1

9
e0.534/0.11121D30.186

3
230.111

0.534
123S 1

9
e0.534/0.1621D

30.03173
230.16

0.534
1¯

50.9810.081¯

51.061¯'1.1. ~20!

Hence we found the ratio to be 111.152.1.
The calculation shows that the higher modes only cont

ute to the spontaneous radiation, which in this particular c
comprise half of the output power. The other half is t
SASE power, which mostly comes from the fundamen
mode, since the contribution from the moden5$61,1% is
much smaller. Thus the result also provides clear informa
about the transverse coherence of the output: it is not c
pletely coherent yet because half of the output is due to sp
taneous radiation.

IV. NUMERICAL SIMULATIONS

We now apply the result of Sec. II to check the analytic
calculation of Sec. III. For example, we know that 12
simulation particles per cell are sufficient to give the corr
gain lengthLG50.11 m. For the idealized case of Sec.
with current of 320 A and emittance of 0.7 mm mrad, w
choose the number of cells to be 61 because there ar
periods in the wiggler, and randomly fill each cell with 120
simulation particles. The azimuthal modes used in the ca
lation are fromm522 to m52, i.e., five modes are used
To simulate our idealized case of Sec. III, a minor modific
tion is incorporated into theTDA3D code to provide an initial
-
se

l

n
-

n-

l

t

61

u-

-

distribution with parallel electron beam and step-functi
profile. The focusing parameter in the code is turned off
that there is no betatron oscillation in the wiggler and t
beam profile is kept constant.

The number of electrons withinl r51 mm is I 0l r /ec
56.73106, so the output power 1.23104 W, as given by
TDA3D, is multiplied by 1200/(6.73106) to get the corrected
simulation power of 2.2 W. Notice that inTDA the output is
given in the form of gain instead of power, so we must set
an input radiation power. In our case, we set it to
10210 W, which is so small that it does not affect the outp
power. Using this method, varying the current from 0 to 3
A, we plot the output power as a function of current in F
2, each point being an average over 30 runs. The reason
we choose to average over 30 runs, in addition to the p
tical consideration about our finite CPU time, is due to
consideration based on our analytical theory about inten
fluctuation@14#, to be explained later in this section. Witho

FIG. 2. Output power vs current for the step-function mode
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averaging, the relative rms fluctuation would have be
100%. With an averaging over 30 runs, the resulting fluct
tion mimics the observed experimental fluctuation, to be d
cussed later. The result shows that the power linearly
creases with the current until about 100 ampe
corresponding to spontaneous radiation, and deviates f
linear dependence when larger than 100 A. At 320 A,
power is a factor 2.2 larger than the linear extrapolation fr
the spontaneous regime. The extrapolated spontan
power is 1.0 W.

The power of the spontaneous radiation serves as a
reliable check of the new simulation method. The sponta
ous radiation power spectrum in a unit solid angle in forwa
direction and at the resonant frequency is given by@15#

B0[S ]2Pspont

~]v/v! ]V
D

u50 v5vs

5
e0Z0I 0

4p
Nw

2 g2
Kmax

2

~11 Kmax
2 /2!2 @JJ#2v55.73106 W.

~21!

Within a bandwidth 1/Nw the radiation opening angle is

uw[A2ls

Lw
51.93 mrad. ~22!

This opening angle has been defined in such a way tha
power spectrum integrated over the full solid angle is

S dPspont

dv/v D
peak

5pu w
2 B0567 W. ~23!

This peak of the power spectrum is detuned at a sligh
lower frequencyv from the resonant frequencyvs . The full
bandwidth of the radiation as we mentioned in Sec. II, for
spontaneous radiation is 1/Nw , the same as the line spacin
we mentioned also in Sec. II. Thus the spontaneous radia
power within this bandwidth and solid angle is

S dPspont

dv/v D
peak

1

Nw
567

1

61
51.1 W. ~24!

This power is also called the power in the central cone. T
we found that it agrees with the simulation to within 10%
This is an excellent agreement, considering the approxim
nature of the simulation and the limited number of mod
and simulation particles used.

Notice that the factor 2.2 also agrees with the previo
analytically estimated value of 2.1 given by Eq.~2.2! excel-
lently, supporting both the simulation and the approximat
made in applying the analytical theory. In Fig. 2 we also p
the analytical calculation based on the description of Sec.
with the calculated ratio multiplied by the calculated spon
neous power in the central cone~which is 1.1 W for 320 A,
as mentioned above!. It shows again an excellent agreeme
Similar calculations have been done for various currents
emittances, and for wiggler lengths from 6LG to 10LG , and
the results always agree with the analytical estimate.
found that when we increase the number of modes and
n
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respondingly the number of simulation particles to maint
the correct growth rate, the spontaneous radiation power
creases. When we examine Fig. 2, we can see that the s
lated spontaneous power is slightly lower than the theo
This is evident particularly when the current is lower th
100 A. So there will be a better agreement between the sp
taneous radiation theory and the simulation, if we can furt
increase the number of modes. However, due to our lim
CPU time, we limited the number of modes to 5 and t
number of particles per cell to 1200.

As we pointed out before, we have used a set of para
eters very close to the 1mm ATF SASE experiment in the
idealized model. Now that we have confirmed the validity
the simulation method, to compare with the experiment m
closely, we change to the more realistic waterbag model.
parameters for the waterbag model are listed in Table I
gether with the step-function model of Sec. III. The wiggl
parameters and the betatron wavelength are based on
actual experiment, the beam current is the peak current m
sured by slice measurement method@16#. The local energy
spread should be smaller than the experimental resolut
we take it to be 4.031023. However, the emittance wa
chosen, based on the analysis of Sec. III, to be 0.7 mm m
to fit the observed SASE power over spontaneous po
ratio, rather than the measured slice emittance of 1.4
mrad. We use the universal scaling function@13,17# to cal-
culate the gain length, and compare with the simulation
find the proper number of simulation particles. Since t
wiggler is much shorter than the measured betatron wa
length~3 m!, even though there is no horizontal focusing, w
can approximately assume the beam size as constant,
apply this formula. Because the focusing is different fro
the natural focusing of the wiggler, the gain length of 0.1
m is calculated using the formula given in@17# instead of the
formula in @13#, which is adequate for natural focusing whi
the formula in Ref.@17# is more general and is also vali
when the focusing is different from natural focusing. T
result is given in Fig. 3, which is very similar to the idealize
model. This means that our analytical calculation using
idealized model provides a very convenient tool to check
simulation and analyze the experiment, as long as we use
same wiggler, the same beam current, and the same
beam size.

FIG. 3. Output power vs current for the waterbag model.
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As a minor detail, notice that to have the same rms be
size, the edge radius of the step-function model should

Rstep52sx5A 2
3 Rwater5138 mm, wheresx is the rms beam

size andRwater the edge beam size for the waterbag mod
Also notice that because the Pierce parameterr is slightly
different for the step-function model and the waterb
model, the scaled beam sizes for the two models are rel

by ãstep5( 2
9 )1/6ãwater51.25.

For a comparison, the ATF experimental data@18# are
plotted in Fig. 4, showing the pulse energy as a function
the electron bunch charge. The measurement has a b
width of 25 nm, corresponding to a relative bandwidth
25 nm/1mm51/40. The opening angle is 1.2 mrad, which
smaller than the opening angle of the radiation for a fix
frequency given by Eq.~22!, i.e., 1.9 mrad. Hence within thi
observation angle, the bandwidth is 1/Nw51/60,1/40.
Therefore the bandwidth is not reduced by the measurem
but the solid angle is reduced by a factor (1.2/1.9)250.4.
The spontaneous radiation power, according to our calc
tion, should be 1.130.450.44 W. To calculate the pulse en
ergy, we use the width of the central part of the measu
pulse, about 2 ps, because most of the SASE energy co
from the peak part, and from the slice measurement@16# we
get 2 ps. So the pulse energy is estimated to be 0.443231.9
51.6 pJ. The ratio 1.9 is taken from Fig. 3. In Fig. 3 t
simulation gives 0.8 W as the spontaneous radiation pow
but we use the calculated 1.1 W instead; this is because
know that when we increase the number of modes, the re
approaches the correct value of 1.1 W, while we found t
the ratio of 1.9 is insensitive to the number of modes. T
measured pulse energy at the maximum charge, corresp
ing to 320 A of peak current, is calibrated to be 1.1 p
Taking into account the approximate nature of all these e
mates, this is a reasonable agreement.

To further check the new simulation method for SAS
we compared with the result of a run using the tim
dependent codeGINGER, provided by Fawley@8#. The result
is consistent with theGINGER calculation, but we canno
claim a rigorous confirmation, because the random natur
the SASE output requires a much larger number of runs
the codeGINGER to give sufficient statistics.

The analytical analysis shows that to achieve the exp

FIG. 4. Output pulse energy vs charge of the ATF experime
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mental finding of the ratio 1.9 of the SASE pulse energy o
the spontaneous radiation, the emittance should be 0.7
mrad. The result is very sensitive to the emittance. For
ample, if the emittance increases to 1 mm mrad, the r
drops to 1.5. The measured global emittance is 2.4 mm m
while the measured slice emittance is 1.4 mm mrad. Ho
ever, this deviation from calculation is not an inconsisten
because as the experimental group explained@18#, the mea-
surement could be a pessimistic one, i.e., the realistic di
bution could be such that both the longitudinal and tra
verse tails of the phase space distribution contrib
significantly to the emittance measurement, but would
have much influence on the performance of the FEL inter
tion. Therefore our results raise a challenge to the furt
improvement of the emittance measurement, or phase s
distribution measurement technique, and also more deta
analysis of the effect of the phase space distribution.

Finally, we shall explain why we averaged over 30 ru
for each point in Figs. 2 and 3. Recently, to explain t
intensity fluctuation in the experiment, we developed a
analytical theory@14#, the result shows that the fluctuation
given by

sw

W
5

1

Al / l c

, ~25!

wheresw is the rms fluctuation of the output SASE ener
W per pulse,l is the length of a flat-top pulse, andl c is a
correlation length characterizing SASE coherence. We fi

l c5NwlsS 2p

3

LG

Lw
D 1/2

, ~26!

whereNw is the number of undulator periods,ls is the ra-
diation wavelength,Lw the undulator length, andLG is the
powere-folding length.

In the recent BNL ATF SASE experiment the gain leng
is about 0.11 m according to our analysis, i.e., the wigg
has 4.9 gain length, 60 periods. So the slippage is 60mm,
and the coherence length is reduced to 60mm/A3/2p 34.9
540 mm. The pulse length is measured to be about 4 ps,
about 1300mm, so the number of coherence length in t
electron bunch is 1300mm/40mm'30. The SASE theory
told us that the output can be approximated by the sum o
independently evolved spikes in the single bunch. Theref
to simulate the fluctuation we averaged over 30 runs to g
each point in Figs. 2 and 3. The fluctuationsw /^W& is
calculated to be aboutA40/1300>17%. This is consisten
with the measured fluctuation of about 15%, considering t
the pulse shape is actually not a step function and the ca
lated beam size is not really large enough to be near the
limit.

V. CONCLUSION

We have developed two very different methods to cal
late the SASE output power: the numerical simulation
TDA3D using the scaling relation, and the analytical meth
The two methods agree with each other very well. The c
culation has been used to analyze the recent ATF 1mm
SASE experiment. Since the scaled beam sizeã is of order

t.
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one, the case is clearly a three-dimensional case, a 1D a
sis is not appropriate. Our new methods of three-dimensio
calculation provide a very useful tool to analyze the rec
SASE experiments.

We provide a very detailed description of the calculati
in the hope that a reader should be able to apply the meth
to carry out the calculation of SASE without going throu
the detailed derivation in the previous papers@2,3#. However,
we also provide detailed references to our previous work
that a reader, who is interested in the details of the der
tion, can follow it step by step.
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APPENDIX: CALCULATION DETAILS
FOR THE GUIDED MODES

As explained in@2#, to calculate the coupling coefficient
given the scaled beam sizeã, we first solve the following
coupled equations for the three variablesx, f, andl for a
mode specified byn5$m, j %, with an azimuthal node num
ber m, and a radial node numberj , using Newton’s root
finding routine. Using a software such as Mathematica,
calculation is not much more than copying the followin
equations, and then using the command ‘‘FindRoot’’ in
mathematical calculation:
az

.

A

s

m

ly-
al
t

ds

o
a-

I.
i-
e

of

e

x
Jm8 ~x!

Jm~x!
5f

Hm
~1!8~f!

Hm
~1!~f!

,

f22x25
ã2

l2 S 122r
f2

ã2 D >
ã2

l2 ,

l5
f2

ã2
1D,

whereJm(x), Hm
(1)(f) are Bessel function and Hankel func

tion, respectively,l is the scaled growth rate, andD is the
scaled detuning, taken to be zero for our case. The m
numbern is determined by the initial trial value of the solu
tion, which is known for largeã. The solution for smallerã
is obtained by gradually reducingã, using the previous so
lution for slightly largerã as trial solution. Notice that the
second equation†Eq. ~6.14! of @2#‡ is simplified as compared
with Ref. @2# becauser is very small.

ThenNnn ,Fn are calculated by

Nnn54
~j2j* !2

j2j* 2

~xx* !2

@ ã~x22x* 2!#2

~ff* !2

f22f* 2 ~l* 22l2!,

Fn52
f2

f22x2 S 11
x2

j2 D 2

l3 ,

with

j[x
Jm8 ~x!

Jm~x!
.

Even though these expressions seem rather complica
their physical meaning is clarified in@3# for large and small
beam size limit, i.e., forã@1, or ã!1.
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